Что такое трехфазное напряжение 380 В и однофазное напряжение 220 В –

Почему между фазой и нолем 220 В, а между фазами 380 В

Мы знаем, что в нашей сети между фазой и нолем 220 В. Но почему тогда между двумя фазами 380 В, а не 440, например? Разбираемся в сути феномена.

Мы знаем, что в нашей сети между фазой и нолем 220 В. Но почему тогда между двумя фазами 380 В, а не 440, например? Разбираемся в сути феномена.

Фазное и линейное напряжения

Напряжение между фазой и нолем называется фазным. На одной фазе напряжение всегда 220 В, а на ноле, соответственно, 0. Так как разница между ними составляет 220 В, то значит фазное напряжение всегда будет 220 В (в бытовой сети бывают скачки и падения, поэтому напряжение может немного меняться).

Но если фазным напряжением все предельно ясно, то с линейным не все так просто. Линейным напряжением называется напряжение между двумя фазами. Мы знаем, что оно составляется 380 В, но откуда оно получается?

Все дело в работе генератора, который генерирует электроэнергию, и установлен на подстанции. Обратите внимание на иллюстрацию ниже. Обмотки (фазы А, В и С) генератора расположены под углом 120 о относительно друг друга. Внутренний индуктор или магнит (обозначенный буквами С и Ю) вращаясь, создает электромагнитное поле. Но так как фазы расположены под углом 120 о относительно друг друга, то вращение индуктора по отношению к каждой фазе смещено на 1/3 цикла. В итоге, когда магнит проходит возле одной фазы, то он максимально возбуждает обмотку до 220 В, а в это же время другая фаза возбуждена лишь на -160. В данном случае линейное напряжение составит Uл = 220 — (-160) = 380 В.

Также для четырехпроводной системы проводки при соединении трехфазного генератора звездой существует такая формула: Uл = квадратный корень из 3*Uф, где Uф — это фазное напряжение, которое равняется 220 В. В итоге получаем Uл = 1,73 *220 = 380 В.

Как бы вы ни решили проводить вычисления, вы придете к показателю в 380 В.

В чем главные отличия линейного и фазного напряжения?

Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.

Электрическое напряжение трехфазных сетей

  • Виды напряжения ↓
  • Отличия ↓
  • Соотношение ↓
  • Схема ↓
  • Расчет линейного и фазного напряжения ↓

Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, определение фазы имеет двойное толкование.

Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.

Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.

Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.

Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.

Виды напряжения

Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:

  1. Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
  2. Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.

Отличия

В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт, поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – заземление.

К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.

Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т.д.

Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.

Соединяя проводники не нужно монтировать нулевой контакт, ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.

Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.

Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.

Читайте также:  Вот как исправить разряд батареи после выключения на ноутбуке

Соотношение

Значение напряжения фазы равняется около 58% от мощности линейного аналога. То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.

Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.

В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.

Самой доступной и универсальной стала система трехфазного типа 380/220 В, имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В., могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.

В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.

Схема

Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.

Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.

Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.

Расчет линейного и фазного напряжения

Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.

Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.

Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:

Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.

И закон Ома:

Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.

В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:

Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.

Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.

Для этого, применяют формулу:

  • Uл=Uф∙√3, где:

Uл – линейное, Uф – фазовое. Формула справедлива, только если – IL = IF.

При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.

При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:

  • Q = Qа + Qb + Qс;

Идентичная структура формулы активной мощности:

  • P = Pа + Pb + Pс;

Примеры расчета:

Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.

Линейные напряжения в этом подключении будут одинаковы и определяются как:

  • U1=U2=U3= √3 Uф=√3*220=380 В.

Трехфазная нагрузка. Линейное напряжение

В каждой отрасли техники можно всегда найти своеобразное эхо давних времен, а именно названия, отражающие своего рода историю развития данного направления. И мало кто знает, что то или другое техническое понятие имеет длинный путь становления, привыкания, а в самом начале своего рождения знаменовало очередной, зачастую весьма значительный, шаг технического прогресса. Так, например, среди электрических терминов очень часто можно слышать выражения «трехфазное напряжение», «линейное напряжение», «постоянное» или «переменное напряжение» и множество других наименований со словом «напряжение».

Наибольшее распространение в электротехнике получили сети переменного напряжения синусоидальной формы. Максимальное значение напряжения при его колебании называется амплитудой Ua. Для такого напряжения применяют дополнительные единицы измерения — частота F и фаза ψ. Частота определяется количеством колебаний в единицу времени, а фаза — это временной сдвиг одинаковых точек колебания. Так уж сложилось исторически, что термином «фаза» стали называть и переменного напряжения, если она является частью системы из многих фаз — обычно трех. были очередным достижением электротехники и имеют так много достоинств, что пройти мимо просто невозможно. И самое главное из них — это возможность крайне просто, фактически без всяких усилий, получать вращающееся магнитное поле — основной принцип работы любого электродвигателя. В различают фазное и линейное напряжение, а ее особенность заключается в том, что каждая из фаз имеет сдвиг по отношению к остальным двум +/- 120 град. напряжения имеет выходные обмотки, в которых конструктивно задан сдвиг фаз. Каждая из обмоток имеет конец и начало: Н1-К1, Н2-К2, Н3-К3. В трехфазной системе возможны два варианта соединения фаз — «звезда» и «треугольник».

Читайте также:  Сигналы регулировщика для трамваев, машин и пешеходов в 2020 году, картинки, стихи и видео

При соединении «звезда» все концы соединяются в одну точку — «вывод 0», а начала служат выводными концами для генератора и входными для запитанного им устройства. В такой системе линейное напряжение — это величина, измеренная между любой парой выходных концов Н1, Н2, Н3, и его обозначают Ulin. Есть и еще одна характеристика трехфазной сети — фазное напряжение. Его обозначают Uf и измеряют между точками «вывод 0» и любым из выходных концов К1, К2 и К3. Опуская подробности, следует отметить, что, исходя из векторной диаграммы для трехфазной сети, соотношения между этими напряжениями Ulin = Ѵ3 * Uf. При соединении «треугольник» концы обмоток соединяют по кольцу: К1-Н1-К2-Н2-К3-Н3-К1. Каждое соединение «конец — начало» является выводом, и при этом линейное напряжение не отличается от фазного, т.е. Ulin = Uf. Интересно сравнить между собой постоянное напряжение Udir и амплитуду переменного напряжения Ua, например, исходя из одинаковой энергии, выделяемой в нагрузке. Для этого случая Udir = Ѵ2 * Ua.

Вот так на протяжении десятилетий копились знания о сущности и природе электричества, и незаметно простое понятие «напряжение» обросло родственными терминами, расширяющими наши возможности в использовании природных явлений для нужд человека.

В электрических цепях бывают разные типы напряжения. Линейное напряжение можно наблюдать в трехфазной сети, где оно возникает между двумя фазовыми проводами. В большинстве случаев его уровень достигает 380 Вольт.

Отличие линейного от фазного напряжения

Если представить трехфазную цепь, то четко понятно, что в ней есть определенное напряжение между фазными контактами и фазным и нулевым проводом. Это происходит из-за того, что в этой схеме используется четырёхпроводная трехфазная цепь. Главные её характеристики – напряжение и частота. Напряжение, возникающее в цепи между двумя фазными проводами – это линейное, а то, что появляется между фазным и нулевым – фазным.

Примечательной особенностью линейного напряжения является то, что именно по нему рассчитываются токи и другие параметры трехфазной цепи. Кроме того, к такой схеме можно подключать не только стандартные трехфазные контакты, но и однофазные (это различные бытовые приборы, приемники). Номинальное равняется 380 вольт, при этом оно может изменяться в зависимости от скачков или других перемен в локальной сети.

Существует несколько вариантов такого соединения, скажем, система с нейтралью под заземлением является самой популярной. Она характеризуется тем, что подключение к ней производится по особой схеме :

  1. Однофазные отводы подключаются к фазным проводам;
  2. Трехфазные – к трехфазным, соответственно.

Линейное напряжение имеет очень широкое использование благодаря своей безопасности и удобства разветвления сети. Электрические приборы подключаются только к одному- фазному проводу, опасность представляет он один. Расчет системы очень прост, в нем руководствуются стандартными формулами из физики. При этом, чтобы измерить этот параметр сети, достаточно воспользоваться простым мультиметром, для того, чтобы замерить характеристики фазового подключения потребуется несколько специальных устройств (датчики тока, вольтметры и прочие).

Некоторые особенности сети:

  1. При разводке такой проводки не требуется использовать профессиональные приборы- все измерения проводятся отвертками с индикаторами;
  2. При соединении проводников нет необходимости подключать нулевой провод, т. к. благодаря свободной нейтрали, риск поражения током крайне мал;
  3. Электротехника использует такую схему подключения для различных электродвигателей и других устройств, требующих высокую мощность для работы. Дело в том, что используя этот тип напряжения есть возможность повысить КПД на треть, что является весьма полезным свойством, в особенности, для асинхронного двигателя;
  4. Схема используется как для переменного тока, так и для постоянного;
  5. Нужно помнить, что однофазное соединение можно подключить к трехфазной сети, но не наоборот;
  6. Но, у такой цепи есть и определенные недостатки. В линейном соединении проводников очень сложно обнаружить повреждения. Это способствует повышенной пожарной опасности.

Соответственно, основная разница между фазовым и линейным напряжением заключается в разности подсоединяемых проводов обмоток.

Для контроля и выравнивания этого параметра часто используется специальный прибор – линейный стабилизатор напряжения. Он позволяет поддерживать показатель на определённом уровне, при этом нормализуя повышенное. Еще одно его определение – импульсный стабилизатор. Устройство может подключаться к розетке, контактам электрических приборов и т. д.

Соединение

Линейное и фазное напряжение часто используется для запуска генератора. Рассмотрим, какие бывают соединения проводов на примере трехфазного генератора. Он состоит из первичных и вторичных обмоток. Их можно соединить звездой или треугольником.

Соединяя проводники в «треугольник» начало второй фазы соединяется с концом первой. Помимо этого, к каждому фазному проводнику подключаются линейные провода источника. Это выравнивает токи, исходя из чего, фазовое напряжение становится равным линейному. Аналогичная схема и для подключения трансформатора и двигателя.

Такое соединение также позволяет обеспечить нулевую электрическую движущую силу и постоянную частоту. Токи обмоток сдвигаются на 120 градусов, благодаря чему в общей схеме это соединение имеет вид трех отдельных токов, которые относительно друг друга сдвинуты на 2/3 периода. Это соотношение может изменяться в зависимости от типа подключаемого устройства и характеристик сети.

Читайте также:  Посторонние шумы скрип, свист, стук, скрежет при повороте руля

Аналогично можно подсоединить трехфазный асинхронный двигатель, стабилизатор или усилитель в сеть 220 вольт «звездой». Эта схема подразумевает подключение начала обмоток к сети. Тогда от входа начнет двигаться ток с характеристиками сети. Контакты выхода (концы обмоток), соединятся с началом при помощи специальных перемычек. Таким образом, межфазное напряжение будет протекать через все активные контакты.

В изолированной сети используются различные пусковые конденсаторы для запуска системы. Аналогично соединяются клеммы на обмотках. Это подключение часто используется для понижающих трансформаторов и различных двигателей, предусмотренных для работы в однофазной сети.

∑ Ik = 0;, которая говорит о том, что в любом узле цепи сила тока равна нулю.

И закон Ома:

I = U / R . Зная эти законы можно без проблем рассчитать любую характеристику определенного контакта или сети.

При разветвлении системы может понадобиться вычислить напряжение между фазовым проводом и нейтральным:

I L = I F – эти параметры могут изменяться в зависимости от подключения. Отсюда следует, что линейные параметры равняются фазовым.

Но, в определенных ситуациях, необходимо рассчитать, чем равно соотношение напряжения между фазовым и линейным проводниками.

Для этого используется формула: Uл=Uф∙√3, где:

Uл –линейное, Uф – фазовое. Формула справедлива только если I L = I F .

При включении в сеть дополнительных отводов, нужно отдельно вычислять фазовое напряжение каждого из подключений. Тогда вместо Uф подставляются данные этого конкретного отвода.

При работе с промышленными установками может потребоваться расчет реактивной трехфазной мощности. Он производится по формуле:

Аналогичный вид имеет формула активной.

Электрические цепи трехфазного переменного тока

Трехфазный электрический ток

Трехфазная цепь представляет собой совокупность электрических цепей, в которых действуют три синусоидальные э.д.с. одинаковой частоты, отличающиеся по фазе одна от другой (φ = 120 о) и создаваемые общим источником энергии. Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, слово фаза в электротехнике имеет два значения – угол φ и часть многофазной системы (отдельный фазный провод).

Основные преимущества трехфазной системы : возможность простого получения кругового вращающегося магнитного поля (это позволило создать электродвигатели переменного тока), экономичность и эффективность (мощность можно передать по трем фазным проводам без применения четвертого общего провода -нейтрали), а также возможность использования двух различных эксплуатационных напряжений в одной установке (фазного и линейного, которые обычно составляют 220 В и 380 В, соответственно).

История появления трехфазных электрических цепей связана с именем М.С. Доливо-Добровольского Петербургского ученого, который в 1886 г., доказав, что многофазные токи способны создавать вращающееся магнитное поле, предложил (запатентовал) конструкцию трехфазного электродвигателя.

Трехфазный ток является простейшей системой многофазных токов, способных создавать вращающееся магнитное поле. Этот принцип положен в основу работы трехфазных электродвигателей.

Предложив конструкцию электродвигателя переменного тока, М.С. Доливо-Добровольский разработал и все основные элементы трехфазной электрической цепи. Трехфазная цепь состоит из трехфазного генератора, трехфазной линии электропередач и трехфазных приемников.

В результате предложенной трехфазной системы электрического тока стало возможным эффективно преобразовывать электрический ток в механическую энергию.

Электрическую энергию трехфазного тока получают в синхронных трехфазных генераторах (рис. 27). Три обмотки 2 статора 1 смещены между собой в пространстве на угол 120°. Их начала обозначены буквами А , В , С , а концы – x , y , z . Ротор 3 выполнен в виде постоянного электромагнита, магнитное поле которого возбуждает постоянный ток I , протекающий по обмотке возбуждения 4. Ротор принудительно приводится во вращение от постороннего двигателя. При вращении магнитное поле ротора последовательно пересекает обмотки статора и индуктирует в них ЭДС, сдвинутые (но уже во времени) между собой на угол 120°.

Трехфазный синхронный генератор

Для симметричной системы ЭДС (рис. 28) справедливо

Волновая и векторная диаграммы симметричной системы ЭДС

На диаграмме изображена прямая последовательность чередования фаз (пересечение ротором обмоток в порядке А , В , С ). При смене направления вращения чередование фаз меняется на обратное — А , С , В . От этого зависит направление вращения трехфазных электродвигателей.

Существует два способа соединения обмоток (фаз) генератора и трехфазного приемника: «звезда» и «треугольник».

В генераторах трехфазного тока электрическая энергия генерируется в трех одинаковых обмотках, соединенных по схеме звезда. Чтобы сэкономить на проводах линии передачи электроэнергии от генератора к потребителю тянутся только три провода. Провод от общей точки соединения обмоток не тянется, т.к. при одинаковых сопротивлениях нагрузки (при симметричной нагрузке) ток в нем равен нулю.

Схема замещения трехфазной системы, соединенной «звездой»

Согласно первому закону Кирхгофа можно записать I O = I А + I В + I С.

При равенстве ЭДС в фазных обмотках генератора и при равенстве сопротивлений нагрузки (т.е. при равенстве значений токов I А,I В,I С)в представленной на рисунке системе, с помощью векторных диаграмм можно показать, что результирующий ток I O в центральном проводнике будет равен нулю. Таким образом, получается, что в симметричных системах (когда сопротивления нагрузок одинаковы), центральный провод может отсутствовать и линия для передачи системы трехфазного тока может состоять только из трех проводов.

В распределительных низковольтных сетях, в которых присутствует много однофазных потребителей, обеспечение равномерной нагрузки каждой фазы становится не возможным, такие сети делаются четырехпроводными.

Для обеспечения электробезопасносности принято низковольтные потребительские сети (сети

Ссылка на основную публикацию
Adblock detector