Своими руками Что такое катушка индуктивности и для чего она нужна, как сделать самому, Ремонт и Стр

Как рассчитать сердечник и витки самодельных катушек индуктивности

При построении электронных устройств часто приходится сталкиваться с индуктивным элементом схемы. Когда на чертеже указано только значение индуктивности L, то расчет катушки индуктивности приходится выполнять самостоятельно. В интернете есть множество программ, позволяющих выполнять расчёт индуктивности катушек онлайн при помощи специального калькулятора. Зная то, как устроен элемент, можно вручную произвести все вычисления.

Что такое катушка индуктивности

Данный элемент ещё называют дросселем. Это свёрнутый в спираль изолированный провод. Для такой спирали характерны большие индуктивные и маленькие ёмкостные параметры.

Важно! Дроссель препятствует протеканию переменного тока, потому что обладает существенной инерционностью. Она препятствует любому изменению проходящего через витки тока. При этом нет разницы, увеличивается он или уменьшается.

В связи с этим данные элементы применяют в электротехнике для осуществления:

  • токоограничения;
  • ослабления биений;
  • помехоподавления;
  • формирования магнитного поля;
  • изготовления датчиков движения.

Дроссель входит в систему колебательного контура в цепях резонанса и применяется в линиях задержки.

Какие параметры есть у катушки

От того, где будет применяться индуктивный элемент и на какой частоте работать, зависит его исполнение. Имеются общие параметры:

  • L – индуктивность;
  • R пот – сопротивление потерь;
  • Q – добротность;
  • свой резонанс и паразитарная ёмкость;
  • коэффициенты ТКИ и ТКД.

Индуктивность (коэффициент самоиндукции) L – это главная электрическая характеристика элемента, которая показывает количество накапливаемой дросселем энергии при передвижении тока. Величина энергии в катушки тем выше, чем больше её индуктивность. Единица измерений L – 1 Гн.

При взаимодействии тока и магнитного поля в обмотке возникают вредные явления. Они способствуют возникновению потерь, которые обозначают R пот. Формула потерь имеет вид:

R пот = rω + rd + rs + re.

Слагаемые формулыэто потери:

  • rω – в проводах;
  • rd – в диэлектрике;
  • rs – в сердечнике;
  • re – на вихревые токи.

В результате таких потерь импеданс индуктивного двухполюсника нельзя назвать целиком реактивным.

Добротность двухполюсника определяется по формуле:

где ω*L = 2π*L – реактивное сопротивление.

При наматывании витков элемента между ними возникает ненужная ёмкость. Из-за этого дроссель превращается в колебательный контур с собственным резонансом.

ТКИ – показатель, описывающий зависимость L от Т0С.

ТКД – показатель, описывающий зависимость добротности от Т0С.

Информация. Изменение основных параметров индуктивного двухполюсника зависит от коэффициентов ТКИ, ТКД, а также от времени и влажности.

Конструкция катушки

По конструктивному исполнению индуктивные элементы различаются:

  • видом намотки: винтоспиральная, винтовая; кольцевая;
  • количеством слоёв: однослойные или многослойные;
  • типом изолированного провода: одножильный, многожильный;
  • наличием каркаса: каркасные или бескаркасные (при небольшом количестве витков толстого провода);
  • геометрией каркаса: прямоугольный, квадратный, тороидальный;
  • наличием сердечника: ферритовый, из карбонильного железа, электротехнической стали, пермаллоевый (магнитомягкий сплав), металлический (латунный);
  • геометрией сердечника: стержневой (разомкнутый), кольцо-образный или ш-образный (замкнутый);
  • возможностью изменять L в узких интервалах (движение сердечника по отношению к обмотке).

Существуют плоские катушки, в печатном исполнении устанавливаемые на платах цифровых устройств.

К сведению. Намотка провода может быть как рядовой (витком к витку), так и в навал. Последний способ укладки провода снижает паразитную ёмкость.

Зачем нужен расчёт индуктивности

Расчет индуктивности нужен, потому что конструктивно это могут быть по-разному выполненные катушки. Применение дросселей в разных отраслях электрики и электроники, их работа под влиянием постоянного и переменного тока требуют тщательного подбора индуктивности, добротности и стабильности работы. При выполнении своими руками дросселей заданного параметра L нужно выполнить расчёт. Для каждого типа индуктивного двухполюсника используется своя формула.

Расчет параметров катушки

Приходится при расчётах рассматривать разные варианты. Расчет индуктивности зависит от исходных данных и заданных конечных параметров.

Расчет L в зависимости от заданной конструкции

Если исходными параметрами являются: w, D каркаса и длина намотанного провода, то формула для расчёта имеет вид:

L = 0,01*D*w2/(l/D) + 0,46,

где:

  • D – диаметр каркаса, см;
  • w – число витков;
  • l – длина намотки, см;
  • L – индуктивность, мкГн.

Подставляя численные значения в формулу, получают значение L.

Расчет количества витков по индуктивности

Зная D каркаса и L, рассчитывают количество витков в катушке, формула имеет вид:

где:

  • L – индуктивность, мкГн;
  • D – диаметр каркаса, мм.

Если в качестве исходных параметров берутся длина навитого в ряд проводника и его диаметр, то количество витков находят, используя формулу:

где:

  • l – длина намотки, мм;
  • d – диаметр провода, мм.

Измерения диаметра провода проводят линейкой или штангенциркулем.

Расчёт индуктивности прямого провода

Собираясь найти L круглого прямого проводника, обращаются к приближённой формуле:

L = (μ0/2π)*l*( μe*ln(l/r) + 1/4* μi,

где:

  • μ0 – магнитная постоянная;
  • μe – относительная магнитная проницаемость (ОМП) среды (для вакуума – 1);
  • μi – ОМП проводника;
  • l – длина провода;
  • r – радиус провода.

Формула справедлива для длинного проводника.

Расчёт однослойной намотки

Однослойные дроссели без сердечника легко и быстро можно рассчитать при помощи онлайн-калькулятора, в окно которого можно забить все известные характеристики, и программа выдаст значение L.

Вычисления проводятся и вручную, с использованием математического выражения. Оно имеет вид:

L = D2*n2/45D + 100*l,

где:

  • D – диаметр катушки, см;
  • l – длина намотанного провода, см;
  • n – количество витков.

Формула подходит для вычислений L дросселей без ферритовых сердечников.

Дроссель с сердечником

При наличии сердечника следует учесть его размеры и форму. В случае одинаковых катушках индуктивность больше у той, которая располагается на сердечнике.

Многослойная намотка

Особенности расчёта при подобном способе наматывания провода заключаются в том, что нужно учитывать его толщину. Формула для дросселя без сердечника имеет вид:

где:

  • Dk – общий диаметр (диаметр каркаса и намотки);
  • t – толщина слоя;
  • l – длина накрученного провода.

Все значения подставляют в мм, величину L – в мкГн.

Факторы, влияющие на индуктивность катушки

Коэффициент самоиндукции зависит от следующих параметров:

  • геометрических особенностей каркаса;
  • формы оправки;
  • числа витков;
  • марки и диаметра провода;
  • свойств магнитопровода.

Интересно. Материал сердечников из распыленного железа выделяют разным цветом в зависимости от марки смеси. Сердечники такого рода используют для дросселей в импульсных устройствах.

Читайте также:  Замена цепи ГРМ Санг Енг Кайрон - Автосервис СангЁнг

Эквивалентная схема реальной катушки индуктивности

Каждый дроссель можно представить в виде эквивалентной схемы.

Данная схема состоит из элементов:

  • Rw – сопротивление обмотки с выводами;
  • L – индуктивность;
  • Cw – паразитная ёмкость;
  • Rl – сопротивление потерь.

Изготавливая индуктивный элемент, стремятся снизить величину сопротивления потерь, паразитную ёмкость. При работе катушки на низкой частоте учитывают сопротивление её обмотки Rw. На таких частотах действуют токи большой величины.

Правильно рассчитанная катушка индуктивности будет иметь высокую добротность (180-300) и стабильность работы при влиянии внешних условий (температуры и влажности). Зная способы различной намотки и манипуляции с шагом, можно уменьшить влияние паразитных факторов.

Видео

Намотка катушки индуктивности на торои­дальные магнитопроводы

Однако намотка катушек на торои­дальных магнитопроводах сопряжена с известными трудностями, особенно при большом числе витков. Радиолюби­тели при намотке таких катушек обычно используют самодельные плоские шпу­ли или челноки. Для облегчения изго­товления катушек, содержащих боль­шое число витков, иногда кольцевой магнитопровод (обычно он феррито­вый) аккуратно разламывают на две части, наматывают на каждой из них половинное число витков, после чего половинки магнитолровода склеивают, а полуобмотки соединяют согласно-по­следовательно (т. е. конец одной с на­чалом другой).

Такому способу свойст­венны существенные недостатки: из-за механических воздействий значитель­но снижается начальная магнитная про­ницаемость материала магнитопрово­да, наличие немагнитных зазоров в местах склеивания уменьшает магнит­ную проницаемость — в результате эф­фективная магнитная проницаемость магнитопровода снижается на порядок, а то и более. Для получения требуемой индуктивности катушки приходится пропорционально увеличивать число ее витков, в результате чего возрастает активное сопротивление обмотки и снижается ее добротность. Из-за не­равномерности распределения витков катушки по магнитопроводу магнитное поле уже не локализуется внутри катуш­ки, дополнительное выпячивание маг­нитного поля из магнитопровода про­исходит в местах склеивания — уве­личиваются внешние поля рассеяния, катушка требует экранирования

Предлагаемый способ позволяет из­готавливать катушки индуктивности на тороидальных (кольцевых) магнитопро­водах с наружным диаметром 10 мм и менее, индуктивностью до нескольких генри с малыми трудовыми затратами. Этим способом можно изготавливать катушки с максимально достижимыми значениями индуктивности и доброт­ности. полностью заполняя обмоткой окно магнитопровода. Такого результата можно достичь, если катушку намотать высокочастот­ным обмоточным проводом (устарев­шее название — литцендрат), представ­ляющим собой жгут (пучок) изолирован­ных одна от другой и скрученных вместе проволок диаметром 0.03—0,1 мм с наружной волокнистой шелковой одно­слойной (марка ЛЭШО) или лавсановой (марка ЛЭ/10) изоляцией (если наруж­ная изоляция состоит из двух слоев — соответственно ЛЭШД или ЛЭЛД). Про­волок в пучке может быть от трех до не­скольких сотен, но для поставленной цели наиболее пригодны провода с числом проволок 7—10 диаметром 0.05 или 0,07 мм. например. ЛЭШО или ЛЭЛО 10×0.05; 7×0.07; 10×0,07.

Суть способа заключается в том. что катушку наматывают сравнительно толстым проводом-жгутом, а затем составляющие его тонкие изолирован­ные провода соединяют между собой согласно-последовательно, в резуль­тате чего требуемое число витков уменьшается в равное числу проводов раз. Технологический процесс состоит из трёх выполняемых последовательно операций; подготовки магнитопрово­да. собственно намотки и соединения проводов. Подготовка магнитопровода заклю­чается в тщательном скруглении острых кромок мелкозернистой наждачной бумагой во избежание повреждения изоляции тонкого обмоточного прово­да. После этого магнитопровод с не­большим натягом обматывают фторо­пластовой лентой.

Такая лента под на­званием ФУМ (фторопластовый уплот­нительный материал) продается в хозяйственных магазинах. Её необхо­димо распустить на полоски шириной 4…5 мм и обмотать такой полоской магнитопровод в один слой. Этим до­стигаются две цели: исключаются межвитковые замыкания обмотки катушки через магнитопровод и снижается тре­ние провода о него при намотке. При работе с ферритовыми магнитопрово­дами следует избегать непосредствен­ных ударов по ним и их падений на жесткие предметы, так как при этом может произойти значительное необ­ратимое изменение начальной магнит­ной проницаемости материала.

Далее определяют необходимую длину многожильного провода для об­мотки. Если известно число витков ка­тушки, то рассчитывают число витков провода, разделив первое из этих чисел на число проволок в проводе. Умножив число витков на среднюю длину витка, получаем необходимую длину провода Среднюю длину витка / я рассчитываю по эмпирической формуле / = D +3h, где D — наружный диаметр магнитопрово­да; h — его высота. Для ферритового кольца типоразмера К 10x6x5 (от дрос­селя ЭПРА КЛЛ) / = 25 мм. Для катушки, состоящей из 150 витков (коэффициент заполнения окна менее 0.5), потребу­ется примерно 25х 150 = 3750 мм = 3,8 м провода ЛЭШО 7×0,07. Это позволит получить катушку, содержащую 900… 1000 витков провода диаметром 0.07 мм. индуктивностью свыше 1 Гн.

Далее, продев провод через магнито­провод и поместив последний примерно посередине провода, привязываю его одинарным узлом так, чтобы место пе­рекрещивания провода 1 располагалось на наружной цилиндрической поверхно­сти кольца 2 (рис. 1). Концы провода на длине примерно 50 мм и узел промазы­ваю нитроклеем. Минут через пять, пос­ле высыхания клея, начинаю наматывать катушку, плотно укладывая витки по внутреннему диаметру кольца.

Во избе­жание расползания витков через каждые два-три витка узел “повторяю”, пропус­кая конец провода внутрь витка. Пройдя первый слой и закрепив конец провода узлом, деревянной зубочисткой устра­няю бочкообразность обмотки внутри кольца, поджимая провод к магнитопро­воду. Следующий слой наматываю вто­рым концом провода с небольшим натя­гом так. чтобы не оборвать проволоки. Жесткие, пропитанные клеем концы провода облегчают заведение его внутрь кольца. Так. чередуя намотку од­ним и другим концами провода, запол­няю окно, равномерно распределяя обмотку по кольцу. После намотки ка­тушки изготавливаю каркас.

Для этого в пластине из листового полистирола или другого термоплас­тичного материала толщиной 3…4 мм сверлю отверстие диаметром на 2…3 мм меньше диаметра получившей­ся катушки. Затем в него ввожу стер­жень разогретого паяльника мощ­ностью 40…65 Вт и его очищенной от окалины боковой поверхностью разо­греваю стенки отверстия. Разогрев веду, непрерывно перемещая стержень паяльника по цилиндрической поверх­ности отверстия. Оно при этом как бы “развальцовывается”, его диаметр уве­личивается и на его кромках появляют­ся кольцевые буртики. Развальцевав отверстие до необходимого диаметра, вставляю в него катушку, и пока заго­товка не остыла, пинцетом аккуратно обжимаю буртики вокруг катушки.

Читайте также:  ГАЗ-24 Волга (1969-1992) характеристики и цена, фотографии и обзор

В результате после остывания заготовки она оказывается надежно зафиксиро­ванной в отверстии. Далее заготовку опиливаю до получения необходимой формы каркаса (рис. 2). Излишки про­вода обрезаю, оставив концы длиной 25…30 мм. Отделив из каждого пучка по одной проволоке, облуживаю их. поль­зуюсь известным способом — осто­рожно протягивая проволоку под жалом паяльника с набранным припоем по от­резку поливинилхлоридной изоляции, снятой с монтажного провода. Изоля­ция проволоки при этом разрушается, и происходит ее облуживание. В торцы каркаса 3 вплавляю отрезки лужёного провода диаметром 0.6…0.8 мм — они будут служить выводами 1 катушки 2. Облуженные проволоки наматываю на выводы 1, места намотки пропаиваю.

Облуживание тонкой проволоки — операция весьма деликатная, велик риск её оборвать, поэтому остальные проволоки я соединяю без снятия изо­ляции методом сварки. Для этого, взяв по одной проволоке от начала и конца обмотки, скручиваю их на длине при­мерно 10 мм и нагреваю место скрутки в пламени многоразовой газовой зажи­галки с инжекционной горелкой. Пламя такой зажигалки имеет вид узкого кону­са голубого цвета. При нагреве прово­локи расплавляются, образуя на месте соединения шарик расплавленного металла 4.

После остывания место со­единения укладываю на каркас так, чтобы проволоки прилегали к каркасу 3, и фиксирую на нём, нагревая жалом остро заточенного паяльника до погру­жения шарика и проволок в тело карка­са. Так достигается механическая проч­ность места соединения. После этого скручиваю, свариваю и фиксирую в кар­касе вторую пару проволок, затем тре­тью и т. д. В результате все проволоки оказываются соединёнными последо­вательно. поэтому нет необходимости их “прозвонки”. Соединив все проволо­ки. убеждаюсь в целостности обмотки и отсутствии короткозамкнутых витков в полученной катушке индуктивности, после чего места соединений проволок покрываю клеем БФ-2.

Предлагаемый способ изготовления катушек индуктивности позволяет зна­чительно снизить трудозатраты при их изготовлении. Следует, однако, учесть, что собственная емкость намотанной таким способом катушки значительно больше, чем намотанной по обычной технологии внавал.

Катушка индуктивности. Устройство и принцип работы.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку �� То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название �� Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

  • mu_0 – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: mu_0 = 4 pi cdot 10^<-7>medspacefrac <Гн>
  • mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S – площадь поперечного сечения катушки
  • N – количество витков
  • l – длина катушки

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет �� Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу ��

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: varepsilon i > 0, участок 3-4: varepsilon > 0, i w – круговая частота: w = 2 pi f . [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u ? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Ссылка на основную публикацию
Adblock detector