Тепловые трубы видео-инструкция по монтажу своими руками, особенности изделий для отопления, принцип 1

Тепловые трубы установка теплого кабеля на отопительные своими руками, видео-инструкция, фото

Тепловые трубы представляют собой теплопередающие устройства, главной особенностью которых является способность передавать большие тепловые мощности при малых перепадах (градиентах) температуры. Устройства такого типа широко используются в теплоэнергетике, химической промышленности, электронике, а также в других областях промышленности.

В данном материале мы постараемся максимально доступно осветить принцип действия тепловых труб, а также рассказать о сфере их применения.

Стеклянный корпус тепловой трубы

Конструкция и функции тепловых труб

Термосифон как предшественник тепловой трубы

Устройством, которое являлось своеобразным «предшественником» тепловых труб современного типа является так называемый термосифон. Его конструкция, хоть и имеет значительные отличия от конструкции тепловых труб, все же базируется на тех же принципах.

Термосифон представляет собой специальную трубчатую емкость, внутрь которой вводится небольшое количество жидкости, после чего из емкости откачивается воздух и она герметизируется путем запайки.

Принцип работы термосифона следующий:

  • Тепло подводится к зоне испарения
  • Жидкость внутри капсулы термосифона превращается в пар, который под давлением движется в зону конденсации.
  • В зоне конденсации пар оседает на стенках, отдавая им тепло – следовательно, одним из условий, обеспечивающих работу термосифона, является эффективное отведение тепла от зоны конденсации пара.
    В противном случае возможен так называемый «кризис кипения», при котором вся жидкость испаряется и теплопередача проходит по стенкам термосифона, минуя зону конденсации.

Применение термосифонов обеспечивает значительную мощность теплопередачи даже том случае, если разница температур между концами термосифона незначительна.

Термосифон работает только тогда, когда его зона конденсации находится выше зоны испарения – только в этом случае возможно возвращение конденсата в зону испарения под действием силы тяжести.

Такая ситуация в ряде случаев является достаточно серьезны ограничением, поэтому на смену термосифонам пришли более сложные устройства — тепловые трубы.

Конструкция тепловой трубы

Наиболее распространенным типом тепловой трубы является тепловая труба Гровера (названная так по имени изобретателя).

Ее конструкция достаточно проста (насколько это возможно применительно к конструкции теплопередающего устройства) и включает в себя три основных элемента:

  • Корпус
  • Рабочую жидкость
  • Фитиль (капиллярно-пористый материал или КПМ)

Конструкция тепловой трубы

Ниже мы рассмотрим особенности конструкции каждого из этих элементов.

Корпус тепловой трубы чаще всего представляет собой камеру круглого или прямоугольного сечения. Для изготовления корпуса применяют нержавеющую сталь, сплавы алюминия, бронзу, медь, стекло, полимерные материалы либо керамику.

Главные функции корпуса – изоляция рабочей жидкости, а также — эффективное подведение и отведение тепла от нее. Для этого корпус должен быть герметичным и выдерживать значительное внутреннее давление.

Тепловые трубы производят с корпусами разных размеров, при этом ограничение в габаритах корпуса есть только «снижу» — они должны быть достаточными, чтобы исключить воздействие капиллярных сил в зоне движения пара.

Чтобы подобная ситуация не возникала, расчёт тепловой трубы, а также ее изготовление должны проводиться исключительно специалистами.

Рабочая жидкость в тепловой трубе является главным носителем тепла, который, собственно, и обеспечивает функционирование всей системы.

Исходя из этого к рабочей жидкости выдвигается ряд требований:

  • Она должна иметь точку перехода «жидкость-пар» в том диапазоне температур, в котором работает труба тепловая.
  • Рабочая жидкость не должна быть подвержена температурному разложению.
  • Она должна смачивать материал фитиля и корпуса тепловой трубы.

В качестве рабочих жидкостей в тепловых трубах применяют различные вещества в жидкой фазе: сжиженные гелий и аммиак, ацетон, воду, ртуть, а также – натрий или серебро.

Фитиль из пористого материала обеспечивает перемещение жидкости из зоны конденсации в зону испарения под действием капиллярных сил. Материал для фитиля должен обеспечивать равномерное движение жидкости по капиллярным порам.

В качестве фитиля используются металлические войлоки, металлические стеки или ткани саржевого типа плетения. Оптимальные материалы для фитиля тепловых труб – титан, медь, никель, нержавеющая сталь.

Отдельную категорию тепловых труб составляют так называемые контурные тепловые трубы. В отличие от классической схемы конструкции тепловой трубы у тепловой трубы контурного типа отсутствует фитиль, а передача рабочей жидкости от зоны испарения к зоне конденсации производится по контурным трубкам.

Схему контурной тепловой трубы вы можете видеть на рисунке.

Контурная схема тепловой трубы

Функции тепловых труб

Главной полезной функцией, которой обладают практически все трубы тепловые, является эффективная теплопередача по оси трубы между двумя зонами с разной температурой. Оптимальная работа тепловой трубы предусматривает, что режимы работы элементов не достигают критического порога.

Подача тепла к тепловой трубе может осуществляться любым удобным для вас способом:

  • Открытым пламенем
  • Электрическим током
  • Контактом с нагретым телом
  • Инфракрасным излучением

При этом единственной величиной, которой лимитируется тепловая мощность трубы, является тепловая стойкость корпуса.

Применение современных тепловых труб

Область применения тепловых труб сегодня достаточно широка.

Они могут использоваться в таких направлениях как:

  • Обустройство каналов эффективной теплопередачи
  • Разделение в пространстве источника нагрева и точки, в которую теплота передается (так называемый сток теплоты)
  • Комплектация термостатов и устройств, аналогичных по назначению
  • Терморегуляция и перенаправление тепловых потоков

Применение тепловых труб в энергетике

Кроме того, тепловые трубы являются обязательной деталью тепловых диодов и выключателей.

Характеристики тепловых труб на современном этапе достаточно впечатляющи:

  • Диапазон температур для работы тепловой трубы – от 4 до 2300 К.
  • Мощность теплопередачи – до 20 кВт на 1 см 2
  • Ресурс работы тепловой трубы составляет более 20 тыс. часов.

Трубы в тепловых сетях

Общие сведения о трубах

Однако под тепловыми трубами зачастую понимают не только устройства для теплопередачи, но и трубы, которые используются в тепловых системах. Ниже мы расскажем о разновидностях этих труб, а также – об особенностях их применения.

Трубы для тепловых сетей могут быть изготовлены из самых разных материалов.

К наиболее распространенным тепловым трубам относятся:

  • Напорные трубы из асбестоцемента
  • Биметаллические трубы
  • Оцинкованные трубы из углеродистой стали
  • Трубы из углеродистой стали с эмалевым или стеклокерамическим покрытием.

От используемого материала зависят не только потери тепла трубами при транспортировке теплоносителя, но и долговечность самой отопительной системы.

Вот почему к выбору материала для труб теплосети нужно подходить крайне ответственно.

Ниже мы рассмотрим все вышеперечисленные разновидности труб, и проанализируем их достоинства и недостатки.

Напорные трубы из асбестоцемента

Достаточно популярные сегодня отопительные трубы из асбестоцемента обладают рядом преимуществ, которые позволяют им «выигрывать» у труб из других материалов.

Напорная труба из асбестоцемента

Среди преимуществ асбестоцементных тепловых труб:

  • Выдерживают температуру теплоносителя (чаще всего горячей воды) до 120 – 130 0 С
  • Устойчивы к коррозии под воздействием почвенных растворов или других факторов
  • Асбест, входящий в состав таких труб, играет роль внутренней армировки, потому трубы из асбестоцементой смеси хорошо выдерживают сдавливающие деформации
  • Теплопроводность труб из асбестоцемента при температуре теплоносителя в 120 градусов меньше, чем теплопроводность аналогичной стальной трубы в аналогичных условиях в 62,5 раза.
    Потому можно смело заявлять, что по отношению к асбестоцементу такое определение как теплые трубы – отнюдь не гипербола.

Кроме того, асбестоцементовые трубы достаточно просты в монтаже и неприхотливы в обслуживании. Также они мало склонны к промерзанию даже в случае, если теплоноситель в них не циркулирует, потому теплый кабель для труб в данном случае практически никогда не требуется.

Тепловые биметаллические трубы

Трубы отопительные биметаллические производятся из высококачественной листовой стали, а поверхность таких труб покрывается защитным спецсоставом. Толщина защитного покрытия составляет от 5 до 20% от толщины стенки трубы.

Главной особенностью таких труб является тот факт, что они производятся горячекатаным методом – при этом не возникает необходимости термического воздействия на трубу, что положительно сказывается на ее антикоррозионных свойствах.

Оребренные биметаллические трубы

Биметаллические трубы для отопительных систем достаточно эффективны с точки зрения минимизации финансовых затрат, так как их срок службы гораздо больше, чем срок службы стальных труб.

И все же биметаллические трубы для теплотрассы используются достаточно редко ввиду их высокой стоимости.

Оцинкованные стальные трубы

При работе с теплоносителем, температура которого не выше 60-70 градусов Цельсия хорошую эффективность также демонстрируют трубы из высокоуглеродистой стали с цинковыми добавками.

Однако цинковое покрытие не универсально – при работе с теплоносителем, pH которого находится в пределах 6-7, оцинкованные трубы стремительно разрушаются. Также на устойчивость покрытия влияет скорость движения теплоносителя и уровень теплоносителя в трубе.

Читайте также:  Куда уходит антифриз (тосол) в Daewoo Lanos - Автомобильный клуб Lanos (Сенс)

Труба в оцинкованной оболочке

Наравне с цинком для продления срока службы тепловых труб используют также легирующие добавки. В качестве таких добавок эффективны никель или алюминий. К другим процедурам, способным существенно повысить коррозионную устойчивость труб, относятся пассивирование, лакировка и фосфатирование внутренних поверхностей.

Что же касается экономичности использования таких труб, то она достаточно невысока. Объясняется это тем, что значительный коэффициент теплопередачи трубы из стали является причиной быстрого остывания теплоносителя.

Стальные трубы с эмалевым покрытием

Еще одна разновидность тепловых труб — стальные углеродистые трубы с эмалевыми покрытиями (также есть модификации со стеклоэмалевым покрытием).

Такие трубы отличаются следующими преимуществами:

  • Гладкая, твердая и долговечная внутренняя поверхность трубы
  • Высокая коррозионная устойчивость к воздействию теплоносителей различного состава
  • Высокая термостойкость
  • Длительный срок службы покрытия, а следовательно – и самих труб

Еще одним преимуществом труб с эмалевым покрытием является их относительно невысокая стоимость.

Как видите, под термином тепловые трубы могут скрываться кА достаточно сложные теплотехнические агрегаты, так и достаточно простые трубные конструкции для отопительных систем. И все же информация об этих устройствах должна быть у всех, кто планирует заниматься созданием отопительных систем.

Переделка кулера для винчестера в кулер для процессора своими руками

Случилось так, что когда подошло время очередного апгрейда, я приобрел практически все комплектующие заново. И от уже имеющегося компьютера осталось старое, доброе, немного устаревшее железо. А отдавать его за бесценок в хищные руки скупщиков. Такая мысль казалась кощунственной. И, естественно, возникло желание собрать второй компьютер. Для Интернета, фотографий, работы в Word… Да мало ли для чего он может пригодиться? Тем более, что выдающиеся скоростные результаты такому компьютеру ни к чему, а вот тихим он быть просто обязан. А железо имелось следующее:

CPU — Barton 2500+

GP – Radeon 8500

И остальное память, HDD, то се…

Так же были у меня две такие вот штуки.

Пассивный кулер на чипсет ZM-NB47J и кулер для винчестера на тепловых трубках ZM-2HC2. Приобретено это было еще прошлым летом как раз для построения подобной системы. Кулер 2HC2 по прямому назначению я никогда не собирался использовать. Он нужен был как источник тепловых трубок, возможно несколько дороговатый. Но тишина требует жертв.

На всякий случай напомню, что тепловая трубка это устройство, имеющее очень высокую теплопроводность, во много раз выше теплопроводности меди. Про тепловые трубки писалось очень много, и я думаю не нужно загромождать статью, повторно описывая устройство и принцип ее работы.

По большому счету, меня беспокоило только охлаждение процессора. На видеокарту можно было приобрести пассивное охлаждение производства того же Zalman. Охлаждение на чипсет есть. Блок питания с пассивным охлаждением у меня тоже имелся.

Этот блок я изготовил из блока EuroCase 480W. Статью об этой процедуре можно посмотреть здесь http://www.overclockers.ru/lab/15862.shtml. Этот блок питания имеет небольшой заводской перекос напряжения в сторону 5 вольт и поэтому не особенно хорош для моего нового «боевого коня». В новом, мощном компьютере цепи питания процессора кормятся от 12 вольт. И поэтому выдаваемые данным блоком немного заниженные 12 вольт плохо сказываются на разгоне, при котором напряжение проседает еще больше. А на Asus A7N8 как раз наоборот. Процессор питается от 5-ти. И такой блок питания отлично подходит.

Так вот, мне нужен был пассивный кулер на процессор. Как то на сайте одного японца с предположительным ником Нумано, я видел самодельные пассивные кулеры на тепловых трубках похожих на трубки из 2HC2. Приведу фотографии взятые с этого сайта:

Устройства на этом сайте мне очень понравились, и я решил взять эти конструкции за основу. Уж больно его трубки похожи на трубки из Залмановского ZM-2HC2. Принцип действия кулера следующий – тепло от ядра процессора, имеющего небольшую площадь, тепловые трубки передают большому радиатору, и равномерно распределяют его по всей площади радиатора. Охлаждаться радиатор будет естественной конвекцией воздуха. Просто поставить на процессор огромный радиатор крайне затруднительно, да и скорости распространения тепла даже в меди будет недостаточно. И получится, что небольшая часть радиатора рядом с процессором и сам процессор будет перегреваться, а периферийные области останутся холодными. Не хватит скорости распространения тепла. Тепловые трубки я расположу веером, и они будут равномерно отдавать тепло по всей площади радиатора.

И начал я разбирать сие чудо науки и техники. Трубки были просто вставлены в отверстия двух алюминиевых пластин и «раскернены» каким-то зубилом. Немного раскачав изделие, я стал вынимать трубку. Сначала она не поддавалась, но потом неожиданно выскочила. И я заехал локтём в стену. На стене осталась аккуратная вмятина. 🙂 Помянув (нехорошо) маму г-на Залмана, стал вынимать следующую, но уже с осторожностью.

После разборки я стал пытаться разогнуть трубку. Это оказалось, на удивление непросто. Трубки очень жесткие. Пришлось приложить приличное усилие. Трубка с хрустом стала разгибаться, а потом неожиданно сломалась. Никакого шипения я не услышал. Создалось впечатление, что разряжения в трубке не было. Так же из трубки вылетела капля жидкости размером со спичечную головку. Жидкость ничем не пахла. Дегустировать ее я не стал. В трубке находится фитиль, изготовленный из сплетенных тонких латунных проволочек.

Теплосъемник я заказал на заводе, хотя при желании можно было изготовить и самому. Ничего сложного. Взять две медных пластины размером 50 на 50 миллиметров. И толщиной миллиметров пять. Стянуть их винтами и просверлить четыре отверстия диаметром 5 миллиметров. Большее число отверстий сверлить, на мой взгляд, бессмысленно. Величина ядра процессора невелика и от крайних трубок будет мало проку.

Для передачи тепла от тепловых трубок к радиатору я решил приспособить оставшиеся после разборки две алюминиевые пластины.

Собрав эту конструкцию с применением, для улучшения теплопередачи, термопасты КПТ-8, я стал примерять изделие в корпус.

Крепеж теплосъемника к сокету я вырезал ножницами по металлу, из куска перфорированной стали, оставшейся от корпуса блока питания. Для рассеивания тепла я применил два радиатора размером 150 на 50 на 60мм. Конечно, они маловаты для рассеивания тепла от Barton 2500+ на номинальной частоте и тем более разогнанного. Но для проверки и для работы на пониженной частоте вполне подойдут. Тем более, в случае успеха эксперимента я могу купить радиатор побольше. В одном радиомагазине я видел радиатор размером почти с боковую стенку мидитауэра, но и стоил он прилично. Покупать его для неизвестно чем закончившегося эксперимента я посчитал опрометчивым.

Прикручивал радиаторы через все ту же незаменимую КПТ-8.

Монтирую в корпус.

Подключаю монитор, клавиатуру… И твердой оверклокерской рукой включаю питание.

Операционная система загрузилась… через несколько минут компьютер завис, после чего он подал звуковой сигнал и отключился. Такой вот, не побоюсь этого слова, конфуз. Пришлось перезагрузиться и посмотреть в BIOS температуру процессора. А температура оказалась выше 80 градусов по подсокетному датчику и продолжала расти. Вот это сюрприз. Пришлось тут же выключить компьютер. Когда системный блок остыл, я еще раз включил компьютер и стал из BIOS наблюдать рост температуры процессора. За считанные минуты температура опять поднялась до 80градусов. Тепловые трубки нагрелись только на пару сантиметров около теплосъемника, а выше были абсолютно холодными. Было полное ощущение, что трубки тепло совершенно не передают! Как же так, я же их проверял. Один конец трубки опускал в стакан с горячей водой и через секунду другой конец нагревался. Сравнивал с обычной медной трубкой такого же диаметра. У той другой конец не нагревался вообще. Вода в стакане остывала быстрее. В чем же дело?

И тут сразу вспомнилось письмо, которое мне недавно написал Mortis.

Вот цитата из этого письма:

«Я пробовал изготовить конструкцию, аналогичную кулермастеровской (по-моему) — два обычных радиатора, соединенных ребрами друг к другу. Сначала такой вариант (трубки на термопасте)

Потом такой (трубки запаяны сплавом Вуда).

Читайте также:  Замена рулевого наконечника на ВАЗ 2108, ВАЗ 2109, ВАЗ 21099

Результат в обоих случаях один, т.е. термоинтерфейс вроде как ни при чем. А происходит вот что: до 50 градусов греется только нижний радиатор, затем разогреваются трубки (но ничего не передают — верхний радиатор холодный) и только когда на трубках уже палец держать невозможно, начинает греться верхний. На процессоре к этому моменту уже около 90 градусов, понятное дело. Если же врубить вентиляторы, то верхний радиатор так и остается холодным.

В последних сериях этих трубок Залман вполне мог сменить жидкость, я свои больше года назад брал.

Меня могли подвести огрехи пайки или сверления.

Возможно, имеет значение на какую глубину трубки заходят в радиатор, т.е. площадь контакта. U-образные, которые у меня на МТХ’овской видеокарте стоят, работают в лучшем виде — там они насквозь через всю подошву радиатора идут. Или просто другой хладагент?»

Второй такой же случай. В чем же все-таки дело? В трубках? Или японец — лгун? Но трубки вне кулера работают. Еще раз проанализировав ситуацию, я пришел к выводу, что Mortis все-таки прав. Дело в глубине погружения трубок в теплосъемник. Но что бы глубже погрузить трубки в теплосъемник, их надо разогнуть. А как это сделать, если они такие хрупкие? Думал, гадал и в результате такого вот бюджетного решения, проявив недюжинную усидчивость и чудеса силы воли, трубки я все же разогнул. Хотя при этом сломал еще одну.

Чтобы не раздавить и не пробить трубку, я в несколько раз сложил газету и через нёе, крайне осторожно, разгибал пассатижами. Очень медленно, по немногу, по всему радиусу загиба. Теперь я получил возможность поглубже поместить трубки в медный теплосъемник.

А трубки я с двух сторон «обжал» двумя радиаторами. Как у Нумано.

Монтирую второй вариант кулера в корпус и уже не так нагло и самонадеянно, а я даже сказал бы что скромно, включаю. И сразу в BIOS.

На всякий случай, понижаю частоту работы процессора до 1100 MHz. И как зачарованный смотрю на температуру процессора. Через половину часа она остановилась на 35 градусах. И больше не увеличивалась. Пощупав трубки, я убедился, что они равномерно теплые. Заработало! Теперь можно загрузить Windows и протестировать получившийся кулер. Чтобы прогреть процессор, я по привычке включил 3DMark03. Хотя, возможно, это и не очень правильно. И прокручивал его в течении часа.

Температура процессора (по подсокетному датчику, смотрел в BIOS) поднялась до 52 градусов, при комнатной температуре 25. Многовато, но в пределах нормы. Правда, на пониженной частоте. Но радиаторы я ставил заведомо невеликие. И греются они прилично.

Что ж, пора делать выводы. Радиаторы имеют явно недостаточную площадь поверхности. Я пробовал обдувать их вентилятором – температура сразу понижалась. Экспериментом с обдувом я подтвердил гипотезу, что не хватает площади поверхности. Если бы дело было в трубках, температура бы не изменилась. Целью статьи и экспериментов являлось подтверждение возможности изготовления безвентиляторного кулера на основе тепловых трубок из ZM-2HC2 в домашних условиях. Мне кажется, что это удалось. И поэтому с обдувом получившегося кулера я не возился. Теперь можно оставить изделие «как есть» и пользоваться, как говорилось выше, компьютером для Интернет и работы в Word. А можно все-таки разориться, купить большой радиатор и пользоваться в номинальном режиме, а может и разогнать…

Расчет рабочих характеристик контурных тепловых труб

Особенности тепловой трубы

Принцип действия

Принцип действия тепловых труб состоит в том, что передача энергии происходит за счет испарения и дальнейшей конденсации жидкости. Чтобы понять, как это происходит на практике, надо представить замкнутую емкость, выполненную из металла с хорошей теплопроводностью и заполненную некоторым количеством воды.

Процессы передачи тепла выглядят в ней следующим образом:

  • При нагреве одной части емкости, вода в ней превратится в пар.
  • Покидая жидкость, водяные пары попадают на охлажденную поверхность, в результате чего пар вновь переходит в жидкое состояние и стекает на прежнее место. При этом большое количество тепловой энергии отводится через стенки металлического резервуара.
  • Остывшая вода опять нагревается и процесс повторяется.

Такая конструкция называется термосифоном. Она хоть и не является тепловой трубкой, однако, принцип работы тот же.

Обратите внимание! Термосифон может работать как положено только в том случае, если его зона конденсации расположена выше зоны испарения. Это обеспечивает возвращение конденсата на место нагрева.

Тепловая труба Гровера

Простейшая конструкция тепловой трубы выглядит следующим образом:

Корпус Обязательно должен быть выполнен из материала, который хорошо проводит тепло. Кроме того, важным требованием к корпусу является его прочность, чтобы он мог обеспечить надежную герметичность.В качестве материала для него обычно используют всевозможные сплавы различных металлов, а также керамику или стекло для труб. От типа корпуса может зависеть цена изделия.
Рабочая среда Представляет собой жидкое вещество (теплоноситель), способное при рабочей температуре переходить в газообразное состояние.
Фитиль Твердый материал с порами, сквозь которые жидкость по капиллярам перемещается из одной части трубы в другую.

Вышеописанное устройство называют тепловой трубой Гровера. Этот ученый в 1963 году усовершенствовал конструкцию термосифона, в которой жидкость стекала самотеком. В тепловой трубе Гровера жидкость перемещается капиллярным способом.

Конструкция тепловой трубки Гровера

Чтобы данная система функционировала, к рабочей жидкости выдвигаются следующие требования:

  • Точка перехода «жидкость-пар» должна находиться в диапазоне температур, в котором работает устройство.
  • Жидкость не должна подвергаться температурному разложению.
  • Материал фитиля и корпус трубы должны смачиваться жидкостью.

В качестве рабочих жидкостей могут применяться различные вещества в жидкой фазе:

  • Аммиак;
  • Сжиженный гелий;
  • Ацетон;
  • Вода;
  • Ртуть;
  • Серебро;
  • Натрий.

Что касается фитиля, то, как уже было сказано выше, данный элемент обеспечивает перемещение жидкости под действием капиллярных сил. Основное требование к этому материалу – обеспечение равномерного движения рабочей жидкости по капиллярам.

На фото – тепловая трубка Гровера в разрезе

Чаще всего в качестве фитиля применяют:

  • Металлические сетки;
  • Металлические войлоки;
  • Металлические стеки;
  • Ткани саржевого плетения и пр.

На первый взгляд может показаться, что данное устройство довольно простое, однако, его технический расчет могут выполнить только специалисты. Дело в том, что для эффективной его работы необходимо правильно подобрать материал, его рабочие характеристики и размеры. Поэтому выполнить тепловые трубки своими руками вряд ли получится, а вот тепловой сифон можно сделать и самостоятельно.

Передача тепловой энергии в таких устройствах может осуществляться несколькими способами:

  • При помощи открытого огня;
  • При непосредственном контакте с нагретым веществом;
  • Электрическим током;
  • Инфракрасным излучением.

Обратите внимание! Единственной величиной, лимитирующей тепловую мощность устройства, является тепловая стойкость его корпуса.

Надо сказать, что функции тепловых трубок Гровера довольно разнообразны, однако основной их задачей является передача тепловой энергии из одной части трубы в другую. Что касается температуры рабочей среды, то инструкция по их применению допускает диапазон от нуля градусов по Цельсию до тысяч градусов.

Схема устройства контурной трубы

Контурные тепловые трубки

С развитием технологий, тепловые трубы Гровера были усовершенствованы – на смену фитилю пришли специальные контурные трубки.

Достоинством такой конструкции является:

  • Надежность в работе;
  • Простота;
  • Более высокий уровень теплопередачи;
  • Хорошая адаптация к разным условиям эксплуатации;
  • Долговечность;
  • Рабочие характеристики сохраняются при любом пространственном положении, благодаря чему устанавливается такая тепловая труба своими руками без каких-либо сложностей.

По сути, контуры являются такими же капиллярами, но обладают большими размерами. В результате их качеств относительно передачи тепла, трубки являются сверхпроводниками тепловой энергии.

Тепловые трубки в системе охлаждения ПК

Инструменты для установки изоляции

Для того чтобы термоусадка выполнила свое назначение, ее предварительно необходимо нагреть больше +120С. Она размякнет и станет эластичной. При остывании она начнет уменьшаться в размерах, плотно облегая стык, к примеру, двух соединяемых проводов. Это на все сто процентов гарантированная изоляция.

Значит, основной инструмент в этом процессе будет любой прибор, который нагреет изоляционный материал. Если разговор идет о профессиональных инструментах, то их несколько:

  • газовая горелка (пропан-бутан), главное, чтобы пламя огня было желтого цвета;
  • специальные пистолеты теплового действия;
  • строительные фены (в их комплект входит несколько насадок, с помощью которых можно регулировать мощность теплового потока).
Читайте также:  Все КОДЫ ошибок ВАЗ и LADA (2104, 2105, 2107, 2109, 2110, 2111, 2112, 2114, 2115, Kalina, Granta, Pr

Если разговор идет о домашнем проведении процесса изоляции, да к тому же своими руками, то можно воспользоваться спичками, зажигалкой, можно опустить термоусадочную трубку в кипяток. Здесь важно не перегреть материал, чтобы он не сгорел и не стал хрупким.

Область применения современных тепловых труб

Сфера применения тепловых труб довольно обширна:

  • Передача тепла с минимальными затратами различным объектам и зданиям.
  • На основе тепловых трубок выполнены многие системы охлаждения, в том числе и холодильники.
  • Отвод тепла в различных устройствах микроэлектроники, в частности, тепловые трубы зачастую применяются в ПК.
  • Медицина.
  • Космическая промышленность.
  • Комплектация термостатов и прочих аналогичных по назначению устройств.
  • Строительство в условиях вечной мерзлоты.
  • В сельском хозяйстве, при обеспечении теплом парников и т.д.
  • Данное устройство является обязательной деталью тепловых выключателей и диодов.
  • Также может использоваться тепловая труба для отопления жилых и производственных помещений.

Применение тепловых трубок в энергетике

Надо сказать, что характеристики современных тепловых труб довольно впечатляющие:

Диапазон температур работы От 4 до 2300 К
Мощность теплопередачи До 20 кВт на квадратный сантиметр
Ресурс работы Более 20 тысяч часов.

Вот, пожалуй, все основные моменты, которые можно вкратце рассказать о тепловых трубах. (См. также статью Разводка труб отопления: особенности.)

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Контурная тепловая труба, содержащая соединенные паро- и конденсатопроводом конденсатор и испаритель, снабженный капиллярно-пористой насадкой с пароотводными и питающими каналами, компенсационную полость, сообщающуюся с конденсатопроводом, и вспомогательную капиллярную структуру, расположенную внутри питающих каналов и компенсационной полости и соединяющую питающие каналы с компенсационной полостью, отличающаяся тем, что испаритель контурной тепловой трубы выполнен в виде нескольких расположенных рядом цилиндрических корпусов с установленными внутри них капиллярно-пористыми насадками со сквозными питающими каналами, при этом компенсационная полость разделена на две части, сообщающиеся друг с другом через питающие каналы и расположенные с противоположных торцов капиллярно-пористых насадок, а пароотводные каналы выводят пар от каждой капиллярно-пористой насадки в общий паропровод.

2. Контурная тепловая труба по п.1, отличающаяся тем, что цилиндрические корпуса встроены в общий контактный фланец из теплопроводного материала.

3. Контурная тепловая труба по п.1, отличающаяся тем, что цилиндрические корпуса снаружи снабжены ребрами из теплопроводного материала.

4. Контурная тепловая труба по п.1, отличающаяся тем, что цилиндрические корпуса расположены рядами в шахматном порядке.

Трубы в тепловых сетях

Общие сведения о трубах

Однако под тепловыми трубами зачастую понимают не только устройства для теплопередачи, но и трубы, которые используются в тепловых системах. Ниже мы расскажем о разновидностях этих труб, а также – об особенностях их применения.

Трубы для тепловых сетей могут быть изготовлены из самых разных материалов.

К наиболее распространенным тепловым трубам относятся:

  • Напорные трубы из асбестоцемента
  • Биметаллические трубы
  • Оцинкованные трубы из углеродистой стали
  • Трубы из углеродистой стали с эмалевым или стеклокерамическим покрытием.

От используемого материала зависят не только потери тепла трубами при транспортировке теплоносителя, но и долговечность самой отопительной системы.

Вот почему к выбору материала для труб теплосети нужно подходить крайне ответственно.

Ниже мы рассмотрим все вышеперечисленные разновидности труб, и проанализируем их достоинства и недостатки.

Напорные трубы из асбестоцемента

Достаточно популярные сегодня отопительные трубы из асбестоцемента обладают рядом преимуществ, которые позволяют им «выигрывать» у труб из других материалов.

Напорная труба из асбестоцемента

Среди преимуществ асбестоцементных тепловых труб:

  • Выдерживают температуру теплоносителя (чаще всего горячей воды) до 120 – 1300 С
  • Устойчивы к коррозии под воздействием почвенных растворов или других факторов
  • Асбест, входящий в состав таких труб, играет роль внутренней армировки, потому трубы из асбестоцементой смеси хорошо выдерживают сдавливающие деформации
  • Теплопроводность труб из асбестоцемента при температуре теплоносителя в 120 градусов меньше, чем теплопроводность аналогичной стальной трубы в аналогичных условиях в 62,5 раза. Потому можно смело заявлять, что по отношению к асбестоцементу такое определение как теплые трубы – отнюдь не гипербола.

Кроме того, асбестоцементовые трубы достаточно просты в монтаже и неприхотливы в обслуживании. Также они мало склонны к промерзанию даже в случае, если теплоноситель в них не циркулирует, потому теплый кабель для труб в данном случае практически никогда не требуется.

Тепловые биметаллические трубы

Трубы отопительные биметаллические производятся из высококачественной листовой стали, а поверхность таких труб покрывается защитным спецсоставом. Толщина защитного покрытия составляет от 5 до 20% от толщины стенки трубы.

Главной особенностью таких труб является тот факт, что они производятся горячекатаным методом – при этом не возникает необходимости термического воздействия на трубу, что положительно сказывается на ее антикоррозионных свойствах.

Оребренные биметаллические трубы

Биметаллические трубы для отопительных систем достаточно эффективны с точки зрения минимизации финансовых затрат, так как их срок службы гораздо больше, чем срок службы стальных труб.

И все же биметаллические трубы для теплотрассы используются достаточно редко ввиду их высокой стоимости.

Оцинкованные стальные трубы

При работе с теплоносителем, температура которого не выше 60-70 градусов Цельсия хорошую эффективность также демонстрируют трубы из высокоуглеродистой стали с цинковыми добавками.

Однако цинковое покрытие не универсально – при работе с теплоносителем, pH которого находится в пределах 6-7, оцинкованные трубы стремительно разрушаются. Также на устойчивость покрытия влияет скорость движения теплоносителя и уровень теплоносителя в трубе.

Труба в оцинкованной оболочке

Наравне с цинком для продления срока службы тепловых труб используют также легирующие добавки. В качестве таких добавок эффективны никель или алюминий. К другим процедурам, способным существенно повысить коррозионную устойчивость труб, относятся пассивирование, лакировка и фосфатирование внутренних поверхностей.

Что же касается экономичности использования таких труб, то она достаточно невысока. Объясняется это тем, что значительный коэффициент теплопередачи трубы из стали является причиной быстрого остывания теплоносителя.

Стальные трубы с эмалевым покрытием

Еще одна разновидность тепловых труб — стальные углеродистые трубы с эмалевыми покрытиями (также есть модификации со стеклоэмалевым покрытием).

Такие трубы отличаются следующими преимуществами:

  • Гладкая, твердая и долговечная внутренняя поверхность трубы
  • Высокая коррозионная устойчивость к воздействию теплоносителей различного состава
  • Высокая термостойкость
  • Длительный срок службы покрытия, а следовательно – и самих труб

Еще одним преимуществом труб с эмалевым покрытием является их относительно невысокая стоимость.

Как видите, под термином тепловые трубы могут скрываться кА достаточно сложные теплотехнические агрегаты, так и достаточно простые трубные конструкции для отопительных систем. И все же информация об этих устройствах должна быть у всех, кто планирует заниматься созданием отопительных систем.

Понравилась статья? Подписывайтесь на наш канал Яндекс.Дзен

Процесс установки термоусадки своими руками

Итак, будем теперь отвечать на вопрос, как пользоваться термоусадочной трубкой? В первую очередь подготавливаются элементы, которые подлежат изоляции. Пусть это будут два конца электрического провода.

  1. Их необходимо очистить от пластиковой оболочки.
  2. С помощью растворителя обезжирить провода, используя тряпочку.
  3. Если внутренняя изоляция кабеля сделана из поливинилхлорида, то ее необходимо удалить наждачной бумагой мелкой зернистости.
  4. Если изоляция – это полиэтилен, то его можно удалить пламенем от зажигалки.

Процесс усадки

Так как мы обговариваем процесс изоляции соединения концов двух проводов, то сначала трубка термоусадочная надевается на один из проводов, производится скрутка двух концов, затем изоляционное изделие смешается на сам стык. Все остальное по нижеследующей схеме:

  1. Если используется, к примеру, для нагрева специальный пистолет, то нужно установить на нем температурный режим в диапазоне 120-200С. Если вами используется трубка, китайского производства, то специалисты рекомендуют снизить температурный режим до 70-110С.
  2. Начинать нагрев, а соответственно усадку, надо с середины стыка. Прогревания нужно обязательно проводить по кругу равномерно, так чтобы центральная часть изделия плотно прижалась к металлическому стыку двух проводов.
  3. Далее, производится попеременно нагрев двух концевых частей трубки, начиная от середины, двигаясь к концу.
  4. Оставляется стык для охлаждения.

Важно! Нельзя допускать перегрева местного значения, вот почему так важно нагревать изоляцию равномерно. После остывания поверхность термоусадочной трубки должна быть гладкой.

Некоторые модели изнутри покрываются клеевым составом. Так вот в процессе нагрева клей будет обязательно выходить наружу, это не снизит качество изоляции.

Ссылка на основную публикацию
Adblock detector